Al Platform
with Python

From ML Infrastructure to
Large-Scale Inference Pipeline
Park JunSeong, Byun Kyuhyun

ML Infrastructure
with Python

Service growth with Al Model

1. Service Growth in 2024
2. Increasing Number of Training Pipelines

Operating ML Infrastructure

1. But... Limited Team Capacity
2. How to Manage Training Pipeline?

More Time, More Projects

1. LLM Router

2. Prompt Studio
3. Custom Builds
4. What’s Next?

PyConKR 2025

HiEZS Al
=1L O

Park JunSeong

e ML Infrastructure Team

o Software Engineer

Weave with Python

Service Growth with Al Models

PyConKR 2025

Service Growth in 2024

with Al Models

e
3.8x YoY Operating Profit Growth
- Achieved 189.1 billion KRW in revenue
- Reached 43 million ARU, with 14 million WAU
- Advertising revenue up 48%

- Service available in Canada, the United States,
the United Kingdom, and Japan

=2 72l + 4,3008F wau 1,400k

Source: h

ttps://about.daangn.com/compan

Feloje]
3764
2 s
3.8 S7t sy g zl_
3762

999
2024

2022

-594¢2

2503712 '

r

archive/Sf1-20244-01%-18914-21

Weave with Python

@
Ck
o R e
Y2 D ZHE LM 2aom

Znois 48% 1

2Nz 4 37% 1

Ao 4+ 52% 1
2EYE
4712 140004 71 219

FHLiCH/ O1F/ 5/ 2

https://about.daangn.com/company/pr/archive/%EB%8B%B9%EA%B7%BC-2024%EB%85%84-%EB%A7%A4%EC%B6%9C-1891%EC%96%B5-%EC%9B%90-%EC%98%81%EC%97%85%EC%9D%B4%EC%9D%B5-376%EC%96%B5-%EC%9B%90-%EA%B8%B0%EB%A1%9D/

PyConKR 2025 Weave with Python

Increasing Number of Training Pipelines

Thousands of daily pipeline increased by 3-4 times

® pipeline_monitoring

Operating ML Infrastructure
with Python

PyConKR 2025 Weave with Python

But... Limited Team Capacity

Growing fast with a limited team
Jun 25, out Oct 21,in

® pipeline_monitoring

PyConKR 2025 Weave with Python

But... Limited Team Capacity

Like...
We’re in the endgame now.

PyConKR 2025 Weave with Python

How to Manage Training Pipelines?
with Kubeflow + TFX

Kubeflow Pipelines

- ML Pipeline Orchestrator based on Argo Workflow

- Provides extensibility and flexibility with Python
- Run workflows through reusable components

- Supports TensorFlow, PyTorch, XGBoost, Etc

Kubeflow

Source : https://github.com/kubeflow/kubeflow

https://github.com/kubeflow/kubeflow

PyConKR 2025

Weave with Python

How to Manage Training Pipelines?

with Kubeflow + TFX

Kubeflow Pipelines

- ML Pipeline Orchestrator based on Argo Workflow
- Provides extensibility and flexibility with Python

- Run workflows through reusable components

- Supports TensorFlow, PyTorch, XGBoost, Etc

TFX(TensorFlow eXtended)

- End-to-end platform for ML pipelines

- Provides a comprehensive set of components and libraries
to handle various stages of an ML workflow

- Supports ML metadata for Kubeflow and Apache Beam for
distributed data processing and scalable workloads

TFX CONFIG

lllllllllllll

— TensorFlow
"""""" Validator Extended

TRAINING &
EVAL DATA

4!0‘

Kubeflow

METADATA STORE

TFX CONFIG

Source : https://github.com/tensorflow/tfx

https://github.com/tensorflow/tfx

PyConKR 2025

How to Manage Training Pipelines?
with Kubeflow + TFX

Data Processing

Bnguery Data
Ingestion

Data Validation p—=n

Data Statistics
Visualization

/

ExampleGen

Model Training

Evaluation
Visualization

7

—

Weave with Python

Deployment

Inference

Transform

Trainer —>

v

Evaluator

Pusher

—= Service
Restart

)

PyConKR 2025

How to Manage Training Pipelines?
with Kubeflow + TFX

Data Processing

BigQuery Data
Ingest‘.on

Anomaly Checker

/

Weave with Python

Evaluation

Publisher

Data Validation p—=

/

Data Statistics
Visualization

Model Training /

Optimized BigQuery
ExampleGen

> Transform

Evaluation
Visualization

7

Trainer —>| Evaluator

\

Model Card
Generator

\

Metadata
Pusher

Deployme_nt

Kontrol
Pusher

Inference

— Service
Restart

PyConKR 2025

How to Manage Training Pipelines?

Configuration with Protobuf

- Preventing type-related bugs and runtime errors from dynamic typing
- Protobuf based validation eliminates additional checking code
- Configuration behavior understood through Protobuf specs without code
analysis
- Backward-compatible field addition/deletion on schema changes
- Human readable .pbtxt file

.proto Schema

V

Protoc Compiler

v

pl:txt Cor\‘Fig

Pc/tl«\on Classes

Pytkon App

ConF?g O[:a:)e.ct

Appl"ca‘tion Logic

PyConKR 2025

How to Manage Training Pipelines?
with Protobuf

Weave with Python

def get_sampling_config(config):
method_type = config.get("sampling_method", {}).get("type")

config.yaml

if method_type "filter_duplicate":
sampling method: if "threshold" not in config["sampling_method"]["params"]:
-—u 3 g - raise ValueError("threshold required for filter_duplicate")
type: fllter_dupllcate if not isinstance(config["sampling_method"]["params"]["threshold"], float):
params: \Jid What types are there? raise TypeError("threshold must be float")
threshold : 0.8 elif method_type "filter_uniform_random":
enable caching: true if "sample_rate" not in config["sampling_method"]:

raise ValueError("sample_rate required for filter_uniform_random")
rate = config["sampling_method"]["sample_rate"]

or if not 0.0 <= rate <= 1.0:
sampling st o raise ValueError("sample_rate must be between 0.0 and 1.0")
type: :filter_uniform_random" elif methodfty{‘)e == "f{lter_future_context":
i # More options...
sample_rate: 0.3 pass
seed: 42 il

raise ValueError(f"Unknown sampling method: {method_type}")

Source : https://carbon.now.sh

https://carbon.now.sh

PyConKR 2025

How to Manage Training Pipelines?
with Protobuf

message FilterDuplicate {
repeated string identifiers = 1;
bool keep_first = 2;
bool enable_caching = 3;

} All filtering method types

message FilterUniformRandom { are in the schema!
float sample_rate = 1;
int32 seed = 2;

}

message SamplingMethod {
oneof method {
FilterDuplicate filter_duplicate = 1;
FilterUniformRandom filter_uniform_random = 2;
// ... Other filters
}
}

Source : https://carbon.now.sh

Weave with Python

https://carbon.now.sh

DU AnKD 91D Veave with Pvtho
PyConKR 2025 Weave with Python

y U (

How to Manage Training Pipelines?

v config
> env
v pipeline
> ads_conversion

Experiments with Protobuf > ads_conversion_coefficient
- Reliable development through Protobuf specifications > community_feed_ranking
red.uces runtlm.e errors . N v B home_feed ranking
- Single repository collaboration enables reusability and .
knowledge sharing || ~ & paseine
- Accelerated iteration cycles enables faster experimentation [3 deploy.pbtxt
and deployment [model.pbtxt

- Reduces ML infrastructure operational burden through

standardized patterns (3 model_card.md

[pipeline.pbtxt
[schema.pbtxt
> baseline_ingestion

> distance-only

Source : Internal GitHub repository

PyConKR 2025

How to Manage Training Pipelines?
~ with GCP Vertex Al Pipelines

Monitoring?
Alert?
Oncall?

Network Failure?

Weave with Python

Quota?

Autoscaler?

Kubeflow Problems?

Kubernetes Problems?

(

How to Manage Training Pipelines?

~ é I 4, r- User code errors

« Cluster issues

o Kubeflow problems
» Network failures

ﬁ

Training pipeline Alert

- Direct K8S/Kubeflow operations require complex failure diagnosis
- All failures trigger ML Infra team callouts
- Limited development time for ML Infra improvements

_J

ML Infrastructure Team Member

Source : ChatGPT

PyConKR 2025 Weave with Python

How to Manage Training Pipelines?
with GCP Vertex Al Pipelines

Google Cloud
Training pipeline on Google Cloud Platform b J

- GCP Vertex Al Pipelines is a serverless service for ML Workflows .
- Supports Kubeflow Pipelines and TFX framework i£ Vertex AL Pipehnes
- Reduced ML Infra team callouts on pipeline failures B
- Eliminates operational burden

- No cluster management & upgrade

- Auto-scaling within quotas

- Easily differentiate between errors in user code and infrastructure

Kubeflow + TFX Pipelines

PyConKR 2025

- How to Manage Training Pipelines?
| with GCP Vertex Al Pipelines

Monitoring?
Alert?
Oncall?

Network Failure?

T

Weave with Python

Quota?

Autoscaler?

Kubeflow Problems?

Kubernetes Problems?

N OARKD 9O E
'yConKR 202

~ e \Aaave with Pyvutha
Weave with Python

How to Manage Training Pipelines?

DMultiple GCP Projects

A ML Pipehnes

Deentralized lonitoring
)

Python based monitoring l
Log-based Filtering &

- Collect ML pipeline logs from multiple GCP projects via VAT Pipelines Metrics
log-based filtering and Vertex Al Pipelines metrics

- Create Alert Policies from collected logs i/

- Generate Slack alerts via GCP Cloud Run using Alert Alort Pobizies

Policies and ML Metadata
- Auto-mention responsible parties and users through SDK

and user group lists

@ Cloud Run Alerts Service¢

Process with ML Metadata & User Group List

\

Slack Channel (4uto-mention ResPonsible Parties)

PyConKR 2025 Weave with Python

How to Manage Training Pipelines?

Wlth mOn ItO rl ng a nd a le rt r ML iInfra Bot & 20244 122 192 2% 2:38
4% pase- -example-pipeline-johan-test-20241219022924 Failed

Pipeline State:
PIPELINE_STATE_FAILED

Project:
Create Time:
< alert-ml-pipeline ¥ 2= 6:.02 2024-12-19 14:38:50
Pod rankingn79dg-594-1039455327-1442408943 is not ready in experiment ranking . Assignee:
" - @Johan (23t
Current phase is Failed .
Error:
gke-ml-kubeflow-pipelin-default-vcpu4-14040470-arms))))
) . The DAG failed because some tasks failed. The failed tasks are:
Kubeflow Plpellne [ImportSchemaGen, BigQueryExampleGen].
Logs also can be viewed in (3 Logs Explorer page and | Raw _Raw log page. Y (paepaEile] = o il =) s fralilcd
due to the above error.
- Container main was terminated due to a Error FdileditothandichtnelobaRiproncctininberie g Sl o
f

- Container wait was terminated due to a Error

2l 190 Updated at 2024-12-19 14:38:50
2023 9& 12

G Pipeline Page Link
2719 =

ool MLInfra Bot 2 202414 128 19% 2% 2:38

BigQueryExampleGen HEFEC| 0f2] 21 MIAUS EQISHFANQ.

(2= %2 1502 Heto| Z2{A0)
base-example-pipeline-johan-test-20241219022924_BigQueryExampleGen Error Log ¥

1 2024-12-19 14:34:35.926538: E
external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261]
Unable to register cuDNN factory: Attempting to register factory
for plugin cuDNN when one has already been registered

/ConkR 2025

How to Manage Training Pipelines? |- =«

kfp_addons
> tf_addons
> tfrs_addons/layers
> tfx_addons
> utils
SDK for utility and reusability B i
init__.
- Frequent training pipeline elements as SDK with cross-team DO _init_py
contributions [test_ml_addons.py
- TFX custom components + additional ML pipeline utilities > docs
- CalVer versioning (YYYY.MM.DD.timestamp) with .dev suffix 0. itignoce
for development
- Modern Python packaging with uv package manager and D etiancE0cmK
pyproject.toml [3 CODEOWNERS
- Python package multi-cloud deployment via GCP Artifact [CONTRIBUTING.md

Registry and AWS Code Artifact
- Operational configurations managed through Central
Dogma 3 cliff.toml

[conftest.py

[README.md

[pyproject.toml

Y uv.lock

Source : Inhouse GitHub repository

PyConKR 2025 Weave with Python

How to Manage Training Pipelines?

Internal SDK Source Code

v

CI/CD Pipeline
SDK for utility and reusability ¢

- Frequent training pipeline elements as SDK with cross-team
contributions

- TFX custom components + additional ML pipeline utilities \
- CalVer versioning (YYYY.MM.DD.timestamp) with .dev suffix Artifact Publishing
for development

- Modern Python packaging with uv package manager and / \

pyproject.toml , _ . GCP Artifact Registry ’
- Python package multi-cloud deployment via GCP Artifact

Registry and AWS Code Artifact
- Operational configurations managed through Central
Dogma

Build & Packaging

\

GCP Services & Applications AWS Services & Applications

()

ML Pipelines Data Processing

More Time, More Projects

PyConKR 2025

LLM

Router

Weave with Python

For self-hosted models and external LLM APl usage eee

Like internal Open Router

LLM Router

with v L

Cost Tracking &
Usage Analytics

Self-hosted Models

External APIs

Custom Fine-tuned
Models

Ggpt-oss-120b

GapPTs

Heclaude

* Gemini

‘5 AWS Bedrock
Models

i Gep
Vertex AL Models

from openai import OpenAI

client = OpenAI(
base_url="https://<INTERNAL_LLM_ROUTER_URL>/",
api_key="<API_KEY>",
default_headers={
"<PROJECT_ID_KEY>": "<PROJECT_ID>",
})
)

stream = False
response = client.chat.completions.create(
model="openai/gpt-5",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Explain this image to me."},

“type": "image_url®,
"image_url": {"url": "https://<IMAGE_URL>.jpg"},
}
]’
}
])
stream=stream,

)

if not stream:
print(response)

]
r

R
PyConKR 2025

Prompt Management Platform

Prompt Studio integrated with LLM Router

Promp‘t Desﬁgn with tewxpla‘te_

Retrieval_> Setup MCP Agents

Query for eValset__-e»

Evaluation

Services

N
Reques‘t———>

Deploy with API

\

Monitoring Feedback

Prow\f)t Versioning

4+ PromptStudio Projects ‘% MCP Tools

gaopl Projects > johan-test

{+) johan-test g
For test

MLeiZatg

€ Orchestration 8 E

© LLMHAE 44

Model
(@ comamn gpt
AN

Parameters

Max
Output
Tokens

Advanced Features

Reasoning Effort Medium -
(] PIl Filtering ©
(J Structured Output

Prompt Template

¥4 {{variable_name}} XY AL

You are a helpful Al assistant for math.
Answer the formula

Z Edit with Al

L ¥ Assistant

Version 1 v W

No version note

\

——
A

7 4=U

U 0| TRZEO| AF22 CiYE

Text Image URL Picture ID

1+1+1=2?

+ Add Test case

B sz

Thought Process

Output

The sum is:
\ [

1+1+1=3.
\]

</> Debug

PyConKR 2025

- Custom Builds

For optimization and internal usage

TensorFlow 10

- S3 Native integration with aws-sdk-cpp

TensorFlow Serving

- Tensorflow Runtime support
- ARM architecture compatibility patches
- S3file system integration

ScaNN

- gcc-10 compatibility patches
- Supports TensorFlow Serving 2.17 version

Optimized TFX Components

- optimized component for Apache Beam

Weave with Python

The Shift to Embedding-based Systems

1. Why We Need Embedding Data
2. How Embeddings Change the Data Handling
3. From Traditional Features to ANN-based Recommendations

. 3 Story of the Inference Pipeline
Inference Plpellne 1. Product Requirements
1 2. Solution Candidates
W Ith 3. Introduction to Apache Beam
4. Introduction to Google Cloud Dataflow
Apa C h e Bea m Pyth o n 5. Pipeline Excution Flow of Dataflow

6. Code Architecture

Practical Performance Tips

1. Diagnosing a Network-Bound Stage

2. Problem: GPU Memory Overload

3. Pipeline Consolidation for Cost Efficiency

o
Byun Kyuhyun

e ML Data Platform Team
o Software Engineer
e AWS Serverless HERO

The Shift to
Embedding-based Systems

PyConKR 2025

Why We Need Embedding Data
From keyword search to semantic understanding
e Previously, recommendations were driven by a
keyword-based approach

)

Advertisement

Flea Market Recomme‘ndation Feature
Engine Store
/ B\ Article
- Title
- Content
Job

- Category

Weave with Python

PyConKR 2025 Weave with Python

From Traditional Features to ANN-based Recommendations
How vector representations transform the recommendation process

e Before
o Recommendations relied on manually engineered features
like category IDs, keyword tags, or numerical scores.
o The matching process often used rule-based filtering or
exact matching in structured fields.
o Similarity between items was limited to predefined

attributes (e.g., same category, matching title keyword).

PyConKR 2025

Why We Need Embedding Data

From keyword search to semantic understanding

Weave with Python

e With LLM: Generate embeddings for data representation

Advertisement

)

Flea Market

Recommendation

Engine

Feature
Store

Article
[0.1123..,
0934%..,
0.09%4 ..,
|

PyConKR 2025 Weave with Python

From Traditional Features to ANN-based Recommendations
How vector representations transform the recommendation process

e After (with Embeddings + ANN)
o Eachitem isrepresented as a dense vector embedding, capturing
semantic meaning from content, images, or user interactions.
o Instead of exact keyword match, Approximate Nearest Neighbor (ANN)
search finds items closest in vector space.
o This enables recommendations based on semantic similarity (e.g.,
“visually similar”, “conceptually related”), even if the metadata doesn’t

)

match exactly.

PyConKR 2025 Weave with Python

How Embeddings Change the Data Handling

A new way to represent and process information

e Data handling changes from keyword/text matching to

vector-based matching
e Embeddings provide flexibility in representation

e Can be used across search, recommendation, and

classification tasks

PyConKR 2025 Weave with Python

From Traditional Features to ANN-based Recommendations
Capabilities unlocked by embedding-based recommendations

e Enablethese...
o Unlocks multi-modal recommendations (text, image, audio,

behavior data).
o Supports cold-start scenarios by leveraging embedding
similarity instead of relying solely on historical interactions.

o More flexible and scalable than manual feature engineering.

Story of
the Inference Pipeline

PyConKR 2025 Weave with Python

Product requirements

Key requirements for our inference pipeline

e Process billions of records within hours

PyConKR 2025 Weave with Python

Product requirements

Key requirements for our inference pipeline

e Process billions of records within hours

e GPU-powered inference with various embedding models

PyConKR 2025 Weave with Python

Product requirements

Key requirements for our inference pipeline

e Process billions of records within hours
e GPU-powered inference with various embedding models

e Dynamic scaling based on data volume

PyConKR 2025 Weave with Python

Product requirements

Key requirements for our inference pipeline

e Process billions of records within hours

e GPU-powered inference with various embedding models
e Dynamic scaling based on data volume

e Develop in Python

e Minimal infrastructure management

PyConKR 2025 Weave with Python

Product requirements

Key requirements for our inference pipeline

e Process billions of records within hours

e GPU-powered inference with various embedding models
e Dynamic scaling based on data volume

e Develop in Python

e Minimal infrastructure management

e Ultilize BigQuery datasets and GCS images

PyConKR 2025 Weave with Python

Product requirements

From Separate Inference Servers to Integrated Pipelines

AS-IS
T e e e R R
! \
Vo \ (b
| a InFerencea :
: Server I
)
|
i Inference |m——=>] :
! :
: GPU |
I
A |
: _ .
!)
\

PyConKR 2025

Product requirements

POV of an ML Engineer working on the old inference pipeline

Inference servers
are auto-scaling

Additional operationa
overhead from scaling
inference servers directly

Sudden large traffic
spike can prevent
proper scaling

Scaling doesn’t
respond immediately

when pipeline requests
increase

Weave with Python

PyConKR 2025

Product requirements

POV of an ML Engineer working on the old inference pipeline

Inference servers
are auto-scaling

Additional operationa
overhead from scaling
inference servers directly

Sudden large traffic
spike can prevent
proper scaling

Scaling doesn’t
respond immediately

when pipeline requests
increase

Weave with Python

PyConKR 2025 Weave with Python

Product requirements

From Separate Inference Servers to Integrated Pipelines

.J
,

: 0 \
| by 1
! Inference : I :
: Server) : 5
| ! 1 |
1 | Inference —>> .] (Y el)|
: Pipeline | Model | : : 3 Model Model) Model | :
| 1 RYEERE
I
! i ! GPU GPU GPU ;
\ / I I
l\] " k J 1

PyConKR 2025

Solution Candidates

Evaluation of Candidates

Weave with Python

Large-scale Fully auto Configure algorithm factors | Streaming Focus
batch support

GPU usage Custom container Native GPU Limited GPU
Python Beam SDK Pyspark Limited PyFlink
Support

Infra Serverless Cluster Cluster +
managemet Complex Config
GCP Native BQ/GCS SDK support Extra setup
integration

PyConKR 2025 Weave with Python

Introduction to Apache Beam

Apache Beam: Write once, run anywhere

Unified programming model for batch and streaming data
processing

Allows you to write your pipeline once and run it on different
runners (e.g., Google Dataflow, Apache Spark, Flink)

Supports multiple languages, including Python, Java, and Go

Portable, scalable, and integrates well with cloud services

PyConKR 2025 Weave with Python

Introduction to Google Cloud Dataflow

Serverless data processing at scale

e Fully managed, serverless data processing service on
Google Cloud

e Runs Apache Beam pipelines for both batch and streaming
workloads

e Automatically handles resource provisioning, scaling, and
optimization

e Integrates seamlessly with BigQuery, Cloud Storage,
Pub/Sub, and more

e Supports multiple languages via Apache Beam SDK (Python,
Java, Go)

PyConKR 2025 Weave with Python

Pipeline Execution Flow of Dataflow

End-to-end execution path of an Apache Beam job on Google Cloud Dataflow

_ Development

Build & push custom container (Docker, dependencies)

% Job Submission v

Submit job to Dataflow (GPU, config)

]
Google Cloud Infra l

Provision GPU-enabled VMs & run containers

(Cy PIPehne Execution

Run Beam SDK Harness & ML inference engine

\
Read/Write: BigQuery, GCS, Pub/Sub, Kafka

PyConKR 2025 Weave with Python

Pipeline Execution Flow of Dataflow

Example of production service

Step name Status Wall time Stages Input steps Output steps
» Read from Kafka @ Running 7 minutes @ F20 O - Decode Proto
Decode Proto @ Running 0 seconds @ F21 Read from Kafka/.../ParMultiDo(Anonymous) Filter
Filter @ Running 0 seconds @ F21 Decode Proto Batch for Image Fetch/ParDo(WithSharedKey)
» Batch for Image Fetch @ Running 0 seconds @ F21 @ F22 Filter Image Metadata Fetch
Image Metadata Fetch @ Running 0 seconds @ F22 Batch for Image Fetch/ParDo(_StatefulBatchElementsDoFn) Image Fetch
Image Fetch @ Running 2 seconds Q@ F22 Image Metadata Fetch Image Resize and Crop
Image Resize and Crop @ Running 2 seconds @ F22 Image Fetch Prompt Preprocess
Prompt Preprocess @ Running 0 seconds Q@ F22 Image Resize and Crop Predict
Predict @ Running 10 seconds @ F22 Prompt Preprocess Postprocess for dimension
Postprocess for dimension @ Running 1 second @ F22 Predict Postprocess for precision
Postprocess for precision @ Running 0 seconds @ F22 Postprocess for dimension Ungroup
Ungroup @ Running 0 seconds @ F22 Postprocess for precision Convert to PredictOutputV2
Convert to PredictOutputV2 @ Running 0 seconds @ F22 Ungroup Convert to Dict for BigQuery Convert for Kafka
Convert for Kafka @ Running 0 seconds @ F22 Convert to PredictOutputV2 Write to Kafka/.../ParMultiDo(Anonymous)
» Write to Kafka @ Running 4 seconds @ F22 Convert for Kafka -
Convert to Dict for BigQuery @ Running 0 seconds @ F22 Convert to PredictOutputV2 Write to BigQuery/.../AppendDestination

» Write to BigQuery @ Running 1 minute @ F19 & F22 Convert to Dict for BigQuery -

PyConKR 2025 Weave with Python

Pipeline Execution Flow of Dataflow

Example of the pipeline

input_collection = pipeline | "Read from Kafka" >> ReadFromKafka(

topics=["my_topic"],

consumer_config={... },
)
image_processed_collection = input_collection | "Image Process" >> ParDo(ImageProcessor(...))
prompt_processed_collection = image_processed_collection | "Prompt Process" >> ParDo(PromptProcessor())
predicted_collection = prompt_processed_collection | "Predict" >> ParDo(Predictor(...))
postprocessed_collection = predicted_collection | "Postprocess" >> ParDo(Postprocessor(...))
postprocessed_collection | "Converter 1" >> ParDo(...) | "Write to BigQuery" >> WriteToBigQuery(...)

postprocessed_collection | "Converter 2" >> ParDo(...) | "Write to Kafka" >> WriteToKafka(...)

PyConKR 2025 Weave with Python

Code Architecture

Contribution-friendly and easy-to-understand patterns

Pipeline S‘tages

Data Sources Data Sinks

Kafka A\ /M —>| Kafka

Input Filter —> Preprocessor r% Predictor Output Converter PubSub

Fetch image metadatas Run emgealghng inference

Download image

Resize and crop image

Build prompt V—? Bigaueﬂl

PubSub

\

BigQuery ~A

PyConKR 2025 Weave with Python

Code Architecture

Contribution-friendly and easy-to-understand patterns

F——client/ # 2|5 MH|A 22l0|AUE (GCS, Redis, BigPicture)
F——inputfilter/ #C|O[E] AA TE{ZI U A
—— outputconverter/ # 0| Z 1} EAl iz}
—— pipelines/ # &| oto|2tol &I
—— postprocessor/ # &2 & X7} 2| 2%
——predictor/ # ML 2 0fj= A

—— preprocessor/ # H|O|E| T X{2| 9! Hx|
—— record/ #OOjE] 2 Hoj

—— scheme/ # BigQuery 27|01 Mo
F——script/ #HIAEE AIYE (0]AI)
F—— sink/ #C|O|E] &3 &

—— source/ #O|O|Ef i3 AA

—— util/ # 38 RETE

=3

ol

Practical Performance Tips

PyConKR 2025

Diagnhosing a Network-Bound Stage

Why low CPU doesn’t mean you can scale-out your way to speed

e Workers show low CPU usage, yet throughput remains flat

Weave with Python

e Autoscaler sees backlog growth — adds more workers

(“scale-out”)

e Result: More workers, small throughput, higher cost

PyConKR 2025

Diagnosing a Network-Bound Stage

Why low CPU doesn’t mean you can scale-out your way to speed

Apacl\e Beam Worker Node

r Harness Process \ (Harness Process \\
r Harness thread \ (Harness thread \

O O)20
o k ~)
j

LCQD\O

(' Harness thread f Harness thread

®) @) 29

A8 B)s

- - J
_)

_/

\ e

35

External Services

Image Server

~
1[_J
_

Gemini
Endpo?nt

OpenAl
Endpo?nt

\
__/

Internal
Eno(po nt

[

Weave with Python

PyConKR 2025 Weave with Python

Why It Happens

Root Causes

Per-element synchronous calls — Blocking HTTP calls stall threads

Low concurrency within a worker — Limited SDK harness threads; blocking
I/0 kills parallelism

Pipeline fusion & tiny bundles — Small bundles — low in-flight concurrency
External system quotas / single-connection limits — No pooling — QPS ceiling
Retry/backoff stalls — Rate-limits + exponential backoff = long idle times

Network plumbing constraints — Latency, port limits, DNS throttling, disabled

keep-alive

PyConKR 2025 Weave with Python

Fixing a Network-Bound Stage in Beam/Dataflow

Practical changes that actually improve throughput

e Make I/O concurrent & non-blocking
o Async client + connection pool + concurrency limits
o Batch elements before API calls
e Break fusion before 1/O
o Use beam.Reshuffle() to get larger bundles into the 1/O

stage

PyConKR 2025

Fixing a Network-Bound Stage in Beam/Dataflow

Practical changes that actually improve throughput

class AsyncHTTPDoFn(beam.DoFn):
def setup(self):
self.sem = asyncio.Semaphore(128)
self.client = httpx.AsyncClient(http2=True)
async def _call_one(self, item):
async with self.sem:
r = await self.client.post(URL, json=item)
return r.json()
async def _call_batch(self, batch):
return await asyncio.gather(*(self._call_one(it) for it in batch))
def process(self, batch):

yield from asyncio.run(self._call_batch(batch))

input_collection

| beam.Reshuffle()

| beam.BatchElements(
min_batch_size=32,
max_batch_size=256

)
| beam.ParDo(AsyncHTTPDoFn())

Weave with Python

PyConKR 2025 Weave with Python

Problem: GPU Memory Overload

How Beam worker processes & threads can exhaust GPU memory

Default behavior: Beam spawns 1 process per CPU core
Each process dynamically creates worker threads

Each thread loads the model for its step

GPU memory is limited (~16 GB)

Model load consumes at least 3GB per thread

If every worker thread loads the model
— CUDA Out of Memory

PyConKR 2025

Introducing Shared in Apache Beam

Optimizing resource usage for model inference

Weave with Python

e Allows multiple threads within a Apache Bean Worker Node
. | t h r Harness Process w f Harness Process \\
single process to share an — —— — ——
Instance
e Reduces memory duplication for ey || B Horness.| | Hormess

expensive objects in

multi-threaded workers - O, Sy
() ()
Shared Instance Shared Instance
J

P @ 4

f
(r

PyConKR 2025

Introducing MultiprocessShared

Optimizing resource usage for model inference

Allows multiple processes on the
same worker to share a single
iInstance

Greatly reduces memory footprint
for large models

Added in Beam Python 2.49.0

Weave with Python

Apache Beam Worker Node

f Harness Process \

Harness

T)

i)

Harness

f Harness Process \\
(Y

Harness Harness

thread thread thread thread
A J S
— -
Shared Instance Shared Instance
& » € <.
[)
Multi Process Shared Instance
X o,

PyConKR 2025 Weave with Python

Problem: GPU Memory Overload

How Beam worker processes & threads can exhaust GPU memory

No more “CUDA out of memory”

Source : https://i.namu.wiki/i/45ad00iM-30NvtUxfXmr5SF-RkJnlXjUsxg1fb2LSwnXxo3whiO1gAHovKfMqYWZxQBc-vOW5mqoOWWfeMmwasQ.webp

PyConKR 2025 Weave with Python

Pipeline Consolidation for Cost EfflClency

Merging low-traffic pipelines to reduce baseline costs sl

Running all pipelines separately
— High baseline cost

|dentified low-traffic pipelines with
underutilized resources
Consolidated these into shared
pipelines

Reduced idle resource usage
without impacting performance

PyConKR 2025 Weave with Python

What’s Next?

Continuing the journey after this talk

e Expand embedding-based pipelines to more products
o Deploy the current embedding-powered architecture
beyond the initial use case, enabling search,
recommendations, and personalization features across
multiple services.
e Improve customer experience with more models
o Integrate additional ML/LLM models to enhance relevance,
accuracy, and responsiveness, focusing on multi-modal
support (text, image, and video) for richer user interactions.

OO0
We are hiring!) E i
=

@

Thank you

N
52

Linkedin: linkedin.com/in/johan-park/
GitHub: github.com/Writtic

ool

Linkedin: linkedin.com/in/novemberde/
Blog: novemberde.github.io

ml xilm

http://linkedin.com/in/johan-park/
http://github.com/Writtic
https://www.linkedin.com/in/novemberde/
https://novemberde.github.io/

