
Park JunSeong, Byun Kyuhyun

표지_중앙_1

AI Platform
with Python

From ML Infrastructure to
Large-Scale Inference Pipeline

Service growth with AI Model
1. Service Growth in 2024
2. Increasing Number of Training Pipelines

ML Infrastructure
with Python

01

목차_1

Operating ML Infrastructure
1. But… Limited Team Capacity
2. How to Manage Training Pipeline?

02

More Time, More Projects
1. LLM Router
2. Prompt Studio
3. Custom Builds
4. What’s Next?

03

발표자_1

박준성
Park JunSeong

● ML Infrastructure Team
○ Software Engineer

제목_2_1

Service Growth with AI Models
01

내용_1_2

Service Growth in 2024
with AI Models

Source : https://about.daangn.com/company/pr/archive/당근-2024년-매출-1891억-원-영업이익-376억-원-기록/

3.8x YoY Operating Profit Growth
· Achieved 189.1 billion KRW in revenue
· Reached 43 million ARU, with 14 million WAU
· Advertising revenue up 48%
· Service available in Canada, the United States,
the United Kingdom, and Japan

https://about.daangn.com/company/pr/archive/%EB%8B%B9%EA%B7%BC-2024%EB%85%84-%EB%A7%A4%EC%B6%9C-1891%EC%96%B5-%EC%9B%90-%EC%98%81%EC%97%85%EC%9D%B4%EC%9D%B5-376%EC%96%B5-%EC%9B%90-%EA%B8%B0%EB%A1%9D/

내용_1_2

Increasing Number of Training Pipelines
Thousands of daily pipeline increased by 3‒4 times

제목_2_1

Operating ML Infrastructure
with Python

02

내용_1_2

But… Limited Team Capacity
Growing fast with a limited team

������ ���� ������

Oct 21, inJun 25, out

내용_1_2

But… Limited Team Capacity
Growing fast with a limited team

Like…
We’re in the endgame now.

내용_1_1

How to Manage Training Pipelines?
with Kubeflow + TFX

Kubeflow Pipelines
· ML Pipeline Orchestrator based on Argo Workflow
· Provides extensibility and flexibility with Python
· Run workflows through reusable components
· Supports TensorFlow, PyTorch, XGBoost, Etc

Source : https://github.com/kubeflow/kubeflow

https://github.com/kubeflow/kubeflow

내용_1_1

How to Manage Training Pipelines?
with Kubeflow + TFX

Kubeflow Pipelines
· ML Pipeline Orchestrator based on Argo Workflow
· Provides extensibility and flexibility with Python
· Run workflows through reusable components
· Supports TensorFlow, PyTorch, XGBoost, Etc

TFX(TensorFlow eXtended)
· End-to-end platform for ML pipelines
· Provides a comprehensive set of components and libraries
to handle various stages of an ML workflow
· Supports ML metadata for Kubeflow and Apache Beam for
distributed data processing and scalable workloads

Source : https://github.com/tensorflow/tfx

https://github.com/tensorflow/tfx

내용_1_2

How to Manage Training Pipelines?
with Kubeflow + TFX

내용_1_2

How to Manage Training Pipelines?
with Kubeflow + TFX

내용_1_1

Configuration with Protobuf
· Preventing type-related bugs and runtime errors from dynamic typing
 · Protobuf based validation eliminates additional checking code
· Configuration behavior understood through Protobuf specs without code
analysis
· Backward-compatible field addition/deletion on schema changes
· Human readable .pbtxt file

How to Manage Training Pipelines?
with Protobuf

내용_1_2

How to Manage Training Pipelines?
with Protobuf

Source : https://carbon.now.sh

👀What types are there?

https://carbon.now.sh

내용_1_2

How to Manage Training Pipelines?
with Protobuf

Source : https://carbon.now.sh

All filtering method types
are in the schema!

https://carbon.now.sh

내용_1_1

How to Manage Training Pipelines?
with Protobuf

Experiments with Protobuf
· Reliable development through Protobuf specifications
reduces runtime errors
· Single repository collaboration enables reusability and
knowledge sharing
· Accelerated iteration cycles enables faster experimentation
and deployment
· Reduces ML infrastructure operational burden through
standardized patterns

Source : Internal GitHub repository

내용_1_2

How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

Autoscaler?

Monitoring?

Alert?

Oncall?

Kubernetes Problems?

Kubeflow Problems?

Quota?

Network Failure?

Training pipeline Alert
· Direct K8S/Kubeflow operations require complex failure diagnosis
· All failures trigger ML Infra team callouts
· Limited development time for ML Infra improvements

내용_1_1

How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

Source : ChatGPT

Training pipeline on Google Cloud Platform
· GCP Vertex AI Pipelines is a serverless service for ML Workflows
· Supports Kubeflow Pipelines and TFX framework
· Reduced ML Infra team callouts on pipeline failures
· Eliminates operational burden
 · No cluster management & upgrade
 · Auto-scaling within quotas
 · Easily differentiate between errors in user code and infrastructure

내용_1_1

How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

내용_1_2

How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

Monitoring?

Alert?

Oncall?

Autoscaler?

Kubernetes Problems?

Kubeflow Problems?

Quota?

Network Failure?

Python based monitoring
· Collect ML pipeline logs from multiple GCP projects via
log-based filtering and Vertex AI Pipelines metrics
· Create Alert Policies from collected logs
· Generate Slack alerts via GCP Cloud Run using Alert
Policies and ML Metadata
· Auto-mention responsible parties and users through SDK
and user group lists

내용_1_1

How to Manage Training Pipelines?
with monitoring and alert

내용_1_2

How to Manage Training Pipelines?
with monitoring and alert

SDK for utility and reusability
· Frequent training pipeline elements as SDK with cross-team
contributions
· TFX custom components + additional ML pipeline utilities
· CalVer versioning (YYYY.MM.DD.timestamp) with .dev suffix
for development
· Modern Python packaging with uv package manager and
pyproject.toml
· Python package multi-cloud deployment via GCP Artifact
Registry and AWS Code Artifact
· Operational configurations managed through Central
Dogma

내용_1_1

How to Manage Training Pipelines?
with internal SDK

Source : Inhouse GitHub repository

내용_1_2

How to Manage Training Pipelines?
with internal SDK

SDK for utility and reusability
· Frequent training pipeline elements as SDK with cross-team
contributions
· TFX custom components + additional ML pipeline utilities
· CalVer versioning (YYYY.MM.DD.timestamp) with .dev suffix
for development
· Modern Python packaging with uv package manager and
pyproject.toml
· Python package multi-cloud deployment via GCP Artifact
Registry and AWS Code Artifact
· Operational configurations managed through Central
Dogma

제목_2_1

More Time, More Projects
03

내용_1_2

LLM Router
For self-hosted models and external LLM API usage

Prompt Studio integrated with LLM RouterLike internal Open Router

내용_1_2

Prompt Management Platform
For service with LLM

Prompt Studio integrated with LLM Router

TensorFlow IO
· S3 Native integration with aws-sdk-cpp

TensorFlow Serving
· Tensorflow Runtime support
· ARM architecture compatibility patches
· S3 file system integration

ScaNN
· gcc-10 compatibility patches
· Supports TensorFlow Serving 2.17 version

Optimized TFX Components
· optimized component for Apache Beam

내용_1_1

Custom Builds
For optimization and internal usage

Practical Performance Tips
1. Diagnosing a Network-Bound Stage
2. Problem: GPU Memory Overload
3. Pipeline Consolidation for Cost Efficiency

Inference Pipeline
with
Apache Beam Python

The Shift to Embedding-based Systems
1. Why We Need Embedding Data
2. How Embeddings Change the Data Handling
3. From Traditional Features to ANN-based Recommendations

01

목차_1

Story of the Inference Pipeline
1. Product Requirements
2. Solution Candidates
3. Introduction to Apache Beam
4. Introduction to Google Cloud Dataflow
5. Pipeline Excution Flow of Dataflow
6. Code Architecture

02

03

발표자_1

변규현
Byun Kyuhyun

● ML Data Platform Team
○ Software Engineer

● AWS Serverless HERO

제목_2_1

The Shift to
Embedding-based Systems

01

내용_1_2

Why We Need Embedding Data
From keyword search to semantic understanding

● Previously, recommendations were driven by a
keyword-based approach

● Before
○ Recommendations relied on manually engineered features

like category IDs, keyword tags, or numerical scores.
○ The matching process often used rule-based filtering or

exact matching in structured fields.
○ Similarity between items was limited to predefined

attributes (e.g., same category, matching title keyword).

내용_1_2

From Traditional Features to ANN-based Recommendations
How vector representations transform the recommendation process

● With LLM: Generate embeddings for data representation

내용_1_2

Why We Need Embedding Data
From keyword search to semantic understanding

내용_1_2

From Traditional Features to ANN-based Recommendations
How vector representations transform the recommendation process

● After (with Embeddings + ANN)
○ Each item is represented as a dense vector embedding, capturing

semantic meaning from content, images, or user interactions.
○ Instead of exact keyword match, Approximate Nearest Neighbor (ANN)

search finds items closest in vector space.
○ This enables recommendations based on semantic similarity (e.g.,

“visually similar”, “conceptually related”), even if the metadata doesn’t
match exactly.

내용_1_2

How Embeddings Change the Data Handling
A new way to represent and process information

● Data handling changes from keyword/text matching to
vector-based matching

● Embeddings provide flexibility in representation
● Can be used across search, recommendation, and

classification tasks

내용_1_2

From Traditional Features to ANN-based Recommendations
Capabilities unlocked by embedding-based recommendations

● Enable these...
○ Unlocks multi-modal recommendations (text, image, audio,

behavior data).
○ Supports cold-start scenarios by leveraging embedding

similarity instead of relying solely on historical interactions.
○ More flexible and scalable than manual feature engineering.

제목_2_1

Story of
the Inference Pipeline

02

● Process billions of records within hours

내용_1_2

Product requirements
Key requirements for our inference pipeline

● Process billions of records within hours

● GPU-powered inference with various embedding models

내용_1_2

Product requirements
Key requirements for our inference pipeline

● Process billions of records within hours

● GPU-powered inference with various embedding models

● Dynamic scaling based on data volume

내용_1_2

Product requirements
Key requirements for our inference pipeline

● Process billions of records within hours

● GPU-powered inference with various embedding models

● Dynamic scaling based on data volume

● Develop in Python

● Minimal infrastructure management

내용_1_2

Product requirements
Key requirements for our inference pipeline

● Process billions of records within hours

● GPU-powered inference with various embedding models

● Dynamic scaling based on data volume

● Develop in Python

● Minimal infrastructure management

● Utilize BigQuery datasets and GCS images

내용_1_2

Product requirements
Key requirements for our inference pipeline

내용_1_2

Product requirements
From Separate Inference Servers to Integrated Pipelines

내용_1_2

Product requirements
POV of an ML Engineer working on the old inference pipeline

내용_1_2

Product requirements
POV of an ML Engineer working on the old inference pipeline

내용_1_2

Product requirements
From Separate Inference Servers to Integrated Pipelines

표 넣기

내용_1_2

Solution Candidates
Evaluation of Candidates

Criteria Beam+Dataflow Spark+DataProc Flink

Large-scale
batch support

Fully auto Configure algorithm factors Streaming Focus

GPU usage Custom container Native GPU Limited GPU

Python
Support

Beam SDK Pyspark Limited PyFlink

Infra
managemet

Serverless Cluster Cluster +
Complex Config

GCP
integration

Native BQ/GCS SDK support Extra setup

내용_1_2

Introduction to Apache Beam
Apache Beam: Write once, run anywhere

● Unified programming model for batch and streaming data
processing

● Allows you to write your pipeline once and run it on different
runners (e.g., Google Dataflow, Apache Spark, Flink)

● Supports multiple languages, including Python, Java, and Go
● Portable, scalable, and integrates well with cloud services

내용_1_2

Introduction to Google Cloud Dataflow
Serverless data processing at scale

● Fully managed, serverless data processing service on
Google Cloud

● Runs Apache Beam pipelines for both batch and streaming
workloads

● Automatically handles resource provisioning, scaling, and
optimization

● Integrates seamlessly with BigQuery, Cloud Storage,
Pub/Sub, and more

● Supports multiple languages via Apache Beam SDK (Python,
Java, Go)

내용_1_2

Pipeline Execution Flow of Dataflow
End-to-end execution path of an Apache Beam job on Google Cloud Dataflow

내용_1_2

Pipeline Execution Flow of Dataflow
Example of production service

내용_1_2

Pipeline Execution Flow of Dataflow
Example of the pipeline

input_collection = pipeline | "Read from Kafka" >> ReadFromKafka(

 topics=["my_topic"],

 consumer_config={... },

)

image_processed_collection = input_collection | "Image Process" >> ParDo(ImageProcessor(...))

prompt_processed_collection = image_processed_collection | "Prompt Process" >> ParDo(PromptProcessor())

predicted_collection = prompt_processed_collection | "Predict" >> ParDo(Predictor(...))

postprocessed_collection = predicted_collection | "Postprocess" >> ParDo(Postprocessor(...))

postprocessed_collection | "Converter 1" >> ParDo(...) | "Write to BigQuery" >> WriteToBigQuery(...)

postprocessed_collection | "Converter 2" >> ParDo(...) | "Write to Kafka" >> WriteToKafka(...)

내용_1_2

Code Architecture
Contribution-friendly and easy-to-understand patterns

내용_1_2

Code Architecture
Contribution-friendly and easy-to-understand patterns

├── client/ # 외부 서비스 클라이언트 (GCS, Redis, BigPicture)

├── inputfilter/ # 데이터 소스 필터링 및 검증

├── outputconverter/ # 예측 결과 형식 변환

├── pipelines/ # 실제 파이프라인 구현체

├── postprocessor/ # 출력 후 추가 처리 로직

├── predictor/ # ML 모델 예측 실행

├── preprocessor/ # 데이터 전처리 및 정제

├── record/ # 데이터 모델 정의

├── scheme/ # BigQuery 스키마 정의

├── script/ # 테스트용 스크립트 (미사용)

├── sink/ # 데이터 출력 대상

├── source/ # 데이터 입력 소스

└── util/ # 공통 유틸리티

제목_2_1

Practical Performance Tips
03

내용_1_2

Diagnosing a Network-Bound Stage
Why low CPU doesn’t mean you can scale-out your way to speed

● Workers show low CPU usage, yet throughput remains flat

● Autoscaler sees backlog growth → adds more workers

(“scale-out”)

● Result: More workers, small throughput, higher cost

내용_1_2

Diagnosing a Network-Bound Stage
Why low CPU doesn’t mean you can scale-out your way to speed

내용_1_2

Why It Happens
Root Causes
● Per-element synchronous calls – Blocking HTTP calls stall threads

● Low concurrency within a worker – Limited SDK harness threads; blocking

I/O kills parallelism

● Pipeline fusion & tiny bundles – Small bundles → low in-flight concurrency

● External system quotas / single-connection limits – No pooling → QPS ceiling

● Retry/backoff stalls – Rate-limits + exponential backoff = long idle times

● Network plumbing constraints – Latency, port limits, DNS throttling, disabled

keep-alive

내용_1_2

Fixing a Network-Bound Stage in Beam/Dataflow
Practical changes that actually improve throughput

● Make I/O concurrent & non-blocking

○ Async client + connection pool + concurrency limits

○ Batch elements before API calls

● Break fusion before I/O

○ Use beam.Reshuffle() to get larger bundles into the I/O

stage

class AsyncHTTPDoFn(beam.DoFn):

 def setup(self):

 self.sem = asyncio.Semaphore(128)

 self.client = httpx.AsyncClient(http2=True)

 async def _call_one(self, item):

 async with self.sem:

 r = await self.client.post(URL, json=item)

 return r.json()

 async def _call_batch(self, batch):

 return await asyncio.gather(*(self._call_one(it) for it in batch))

 def process(self, batch):

 yield from asyncio.run(self._call_batch(batch))

내용_1_2

Fixing a Network-Bound Stage in Beam/Dataflow
Practical changes that actually improve throughput

input_collection

| beam.Reshuffle()

| beam.BatchElements(

min_batch_size=32,

max_batch_size=256

)

| beam.ParDo(AsyncHTTPDoFn())

내용_1_2

Problem: GPU Memory Overload
How Beam worker processes & threads can exhaust GPU memory

● Default behavior: Beam spawns 1 process per CPU core
● Each process dynamically creates worker threads
● Each thread loads the model for its step
● GPU memory is limited (~16 GB)
● Model load consumes at least 3GB per thread

If every worker thread loads the model
→ CUDA Out of Memory

내용_1_2

Introducing Shared in Apache Beam
Optimizing resource usage for model inference

● Allows multiple threads within a
single process to share an
instance

● Reduces memory duplication for
expensive objects in
multi-threaded workers

내용_1_2

Introducing MultiprocessShared
Optimizing resource usage for model inference

● Allows multiple processes on the
same worker to share a single
instance

● Greatly reduces memory footprint
for large models

● Added in Beam Python 2.49.0

No more “CUDA out of memory”

내용_1_2

Problem: GPU Memory Overload
How Beam worker processes & threads can exhaust GPU memory

Source : https://i.namu.wiki/i/45ad00iM-3ONvtUxfXmr5SF-RkJnlXjUsxg1fb2LSwnXxo3whiO1qAHovKfMqYWZxQBc-v9W5mq0WWfeMmwasQ.webp

● Running all pipelines separately
→ High baseline cost

● Identified low-traffic pipelines with
underutilized resources

● Consolidated these into shared
pipelines

● Reduced idle resource usage
without impacting performance

내용_1_2

Pipeline Consolidation for Cost Efficiency
Merging low-traffic pipelines to reduce baseline costs

내용_1_2

What’s Next?
Continuing the journey after this talk

● Expand embedding-based pipelines to more products
○ Deploy the current embedding-powered architecture

beyond the initial use case, enabling search,
recommendations, and personalization features across
multiple services.

● Improve customer experience with more models
○ Integrate additional ML/LLM models to enhance relevance,

accuracy, and responsiveness, focusing on multi-modal
support (text, image, and video) for richer user interactions.

발표자_1

We are hiring🙌

Thank you

박준성
Linkedin: linkedin.com/in/johan-park/
GitHub: github.com/Writtic

목차_1

변규현
Linkedin: linkedin.com/in/novemberde/
Blog: novemberde.github.io

http://linkedin.com/in/johan-park/
http://github.com/Writtic
https://www.linkedin.com/in/novemberde/
https://novemberde.github.io/

