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Service Growth in 2024
with AI Models

Source : https://about.daangn.com/company/pr/archive/당근-2024년-매출-1891억-원-영업이익-376억-원-기록/

3.8x YoY Operating Profit Growth
· Achieved 189.1 billion KRW in revenue
· Reached 43 million ARU, with 14 million WAU
· Advertising revenue up 48%
· Service available in Canada, the United States, 
the United Kingdom, and Japan

https://about.daangn.com/company/pr/archive/%EB%8B%B9%EA%B7%BC-2024%EB%85%84-%EB%A7%A4%EC%B6%9C-1891%EC%96%B5-%EC%9B%90-%EC%98%81%EC%97%85%EC%9D%B4%EC%9D%B5-376%EC%96%B5-%EC%9B%90-%EA%B8%B0%EB%A1%9D/


내용_1_2

Increasing Number of Training Pipelines
Thousands of daily pipeline increased by 3‒4 times
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Operating ML Infrastructure 
with Python
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But… Limited Team Capacity
Growing fast with a limited team
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But… Limited Team Capacity
Growing fast with a limited team

Like…
We’re in the endgame now.
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How to Manage Training Pipelines?
with Kubeflow + TFX

Kubeflow Pipelines
· ML Pipeline Orchestrator based on Argo Workflow
· Provides extensibility and flexibility with Python
· Run workflows through reusable components
· Supports TensorFlow, PyTorch, XGBoost, Etc

Source : https://github.com/kubeflow/kubeflow

https://github.com/kubeflow/kubeflow
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How to Manage Training Pipelines?
with Kubeflow + TFX

Kubeflow Pipelines
· ML Pipeline Orchestrator based on Argo Workflow
· Provides extensibility and flexibility with Python
· Run workflows through reusable components
· Supports TensorFlow, PyTorch, XGBoost, Etc

TFX(TensorFlow eXtended)
· End-to-end platform for ML pipelines
· Provides a comprehensive set of components and libraries 
to handle various stages of an ML workflow
· Supports ML metadata for Kubeflow and Apache Beam for 
distributed data processing and scalable workloads

Source : https://github.com/tensorflow/tfx

https://github.com/tensorflow/tfx
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How to Manage Training Pipelines?
with Kubeflow + TFX
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How to Manage Training Pipelines?
with Kubeflow + TFX
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Configuration with Protobuf
· Preventing type-related bugs and runtime errors from dynamic typing
  · Protobuf based validation eliminates additional checking code
· Configuration behavior understood through Protobuf specs without code 
analysis
· Backward-compatible field addition/deletion on schema changes
· Human readable .pbtxt file

How to Manage Training Pipelines?
with Protobuf
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How to Manage Training Pipelines?
with Protobuf

Source : https://carbon.now.sh

👀What types are there?

https://carbon.now.sh
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How to Manage Training Pipelines?
with Protobuf

Source : https://carbon.now.sh

All filtering method types 
are in the schema!

https://carbon.now.sh
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How to Manage Training Pipelines?
with Protobuf

Experiments with Protobuf
· Reliable development through Protobuf specifications 
reduces runtime errors
· Single repository collaboration enables reusability and 
knowledge sharing
· Accelerated iteration cycles enables faster experimentation 
and deployment
· Reduces ML infrastructure operational burden through 
standardized patterns

Source : Internal GitHub repository
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How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

Autoscaler?

Monitoring?

Alert?

Oncall?

Kubernetes Problems?

Kubeflow Problems?

Quota?

Network Failure?



Training pipeline Alert
· Direct K8S/Kubeflow operations require complex failure diagnosis
· All failures trigger ML Infra team callouts
· Limited development time for ML Infra improvements
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How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

Source : ChatGPT



Training pipeline on Google Cloud Platform
· GCP Vertex AI Pipelines is a serverless service for ML Workflows
· Supports Kubeflow Pipelines and TFX framework
· Reduced ML Infra team callouts on pipeline failures
· Eliminates operational burden
  · No cluster management & upgrade
  · Auto-scaling within quotas
  · Easily differentiate between errors in user code and infrastructure

내용_1_1

How to Manage Training Pipelines?
with GCP Vertex AI Pipelines
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How to Manage Training Pipelines?
with GCP Vertex AI Pipelines

Monitoring?

Alert?

Oncall?

Autoscaler?

Kubernetes Problems?

Kubeflow Problems?

Quota?

Network Failure?



Python based monitoring
· Collect ML pipeline logs from multiple GCP projects via 
log-based filtering and Vertex AI Pipelines metrics
· Create Alert Policies from collected logs
· Generate Slack alerts via GCP Cloud Run using Alert 
Policies and ML Metadata
· Auto-mention responsible parties and users through SDK 
and user group lists

내용_1_1

How to Manage Training Pipelines?
with monitoring and alert
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How to Manage Training Pipelines?
with monitoring and alert



SDK for utility and reusability
· Frequent training pipeline elements as SDK with cross-team 
contributions
· TFX custom components + additional ML pipeline utilities
· CalVer versioning (YYYY.MM.DD.timestamp) with .dev suffix 
for development
· Modern Python packaging with uv package manager and 
pyproject.toml
· Python package multi-cloud deployment via GCP Artifact 
Registry and AWS Code Artifact
· Operational configurations managed through Central 
Dogma

내용_1_1

How to Manage Training Pipelines?
with internal SDK

Source : Inhouse GitHub repository
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How to Manage Training Pipelines?
with internal SDK

SDK for utility and reusability
· Frequent training pipeline elements as SDK with cross-team 
contributions
· TFX custom components + additional ML pipeline utilities
· CalVer versioning (YYYY.MM.DD.timestamp) with .dev suffix 
for development
· Modern Python packaging with uv package manager and 
pyproject.toml
· Python package multi-cloud deployment via GCP Artifact 
Registry and AWS Code Artifact
· Operational configurations managed through Central 
Dogma
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More Time, More Projects
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LLM Router
For self-hosted models and external LLM API usage

Prompt Studio integrated with LLM RouterLike internal Open Router
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Prompt Management Platform
For service with LLM

Prompt Studio integrated with LLM Router



TensorFlow IO
· S3 Native integration with aws-sdk-cpp

TensorFlow Serving
· Tensorflow Runtime support
· ARM architecture compatibility patches
· S3 file system integration

ScaNN
· gcc-10 compatibility patches
· Supports TensorFlow Serving 2.17 version

Optimized TFX Components
· optimized component for Apache Beam

내용_1_1

Custom Builds
For optimization and internal usage



Practical Performance Tips
1. Diagnosing a Network-Bound Stage
2. Problem: GPU Memory Overload
3. Pipeline Consolidation for Cost Efficiency

Inference Pipeline
with
Apache Beam Python

The Shift to Embedding-based Systems
1. Why We Need Embedding Data
2. How Embeddings Change the Data Handling
3. From Traditional Features to ANN-based Recommendations
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Story of the Inference Pipeline
1. Product Requirements
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4. Introduction to Google Cloud Dataflow
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변규현
Byun Kyuhyun

● ML Data Platform Team
○ Software Engineer

● AWS Serverless HERO
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The Shift to 
Embedding-based Systems

01
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Why We Need Embedding Data
From keyword search to semantic understanding

● Previously, recommendations were driven by a 
keyword-based approach



● Before
○ Recommendations relied on manually engineered features 

like category IDs, keyword tags, or numerical scores.
○ The matching process often used rule-based filtering or 

exact matching in structured fields.
○ Similarity between items was limited to predefined 

attributes (e.g., same category, matching title keyword). 

내용_1_2

From Traditional Features to ANN-based Recommendations
How vector representations transform the recommendation process



● With LLM: Generate embeddings for data representation
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Why We Need Embedding Data
From keyword search to semantic understanding
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From Traditional Features to ANN-based Recommendations
How vector representations transform the recommendation process

● After (with Embeddings + ANN)
○ Each item is represented as a dense vector embedding, capturing 

semantic meaning from content, images, or user interactions.
○ Instead of exact keyword match, Approximate Nearest Neighbor (ANN) 

search finds items closest in vector space.
○ This enables recommendations based on semantic similarity (e.g., 

“visually similar”, “conceptually related”), even if the metadata doesn’t 
match exactly.
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How Embeddings Change the Data Handling
A new way to represent and process information

● Data handling changes from keyword/text matching to 
vector-based matching

● Embeddings provide flexibility in representation
● Can be used across search, recommendation, and 

classification tasks
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From Traditional Features to ANN-based Recommendations
Capabilities unlocked by embedding-based recommendations

● Enable these...
○ Unlocks multi-modal recommendations (text, image, audio, 

behavior data).
○ Supports cold-start scenarios by leveraging embedding 

similarity instead of relying solely on historical interactions.
○ More flexible and scalable than manual feature engineering.
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Story of
the Inference Pipeline
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● Process billions of records within hours

내용_1_2

Product requirements
Key requirements for our inference pipeline



● Process billions of records within hours

● GPU-powered inference with various embedding models
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● Process billions of records within hours

● GPU-powered inference with various embedding models

● Dynamic scaling based on data volume
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● Process billions of records within hours

● GPU-powered inference with various embedding models

● Dynamic scaling based on data volume

● Develop in Python

● Minimal infrastructure management
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Product requirements
Key requirements for our inference pipeline



● Process billions of records within hours

● GPU-powered inference with various embedding models

● Dynamic scaling based on data volume

● Develop in Python

● Minimal infrastructure management

● Utilize BigQuery datasets and GCS images

내용_1_2

Product requirements
Key requirements for our inference pipeline
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Product requirements
From Separate Inference Servers to Integrated Pipelines
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Product requirements
POV of an ML Engineer working on the old inference pipeline
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Product requirements
POV of an ML Engineer working on the old inference pipeline
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Product requirements
From Separate Inference Servers to Integrated Pipelines



표 넣기

내용_1_2

Solution Candidates
Evaluation of Candidates

Criteria Beam+Dataflow Spark+DataProc Flink

Large-scale 
batch support

Fully auto Configure algorithm factors Streaming Focus

GPU usage Custom container Native GPU Limited GPU

Python 
Support

Beam SDK Pyspark Limited PyFlink

Infra 
managemet

Serverless Cluster Cluster +
Complex Config

GCP 
integration

Native BQ/GCS SDK support Extra setup
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Introduction to Apache Beam
Apache Beam: Write once, run anywhere

● Unified programming model for batch and streaming data 
processing

● Allows you to write your pipeline once and run it on different 
runners (e.g., Google Dataflow, Apache Spark, Flink)

● Supports multiple languages, including Python, Java, and Go
● Portable, scalable, and integrates well with cloud services
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Introduction to Google Cloud Dataflow
Serverless data processing at scale

● Fully managed, serverless data processing service on 
Google Cloud

● Runs Apache Beam pipelines for both batch and streaming 
workloads

● Automatically handles resource provisioning, scaling, and 
optimization

● Integrates seamlessly with BigQuery, Cloud Storage, 
Pub/Sub, and more

● Supports multiple languages via Apache Beam SDK (Python, 
Java, Go)
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Pipeline Execution Flow of Dataflow
End-to-end execution path of an Apache Beam job on Google Cloud Dataflow
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Pipeline Execution Flow of Dataflow
Example of production service
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Pipeline Execution Flow of Dataflow
Example of the pipeline

input_collection = pipeline | "Read from Kafka" >> ReadFromKafka(

    topics=["my_topic"],

    consumer_config={... },

)

image_processed_collection = input_collection | "Image Process" >> ParDo(ImageProcessor(...))

prompt_processed_collection = image_processed_collection | "Prompt Process" >> ParDo(PromptProcessor())

predicted_collection = prompt_processed_collection | "Predict" >> ParDo(Predictor(...))

postprocessed_collection = predicted_collection | "Postprocess" >> ParDo(Postprocessor(...))

postprocessed_collection | "Converter 1" >> ParDo(...) | "Write to BigQuery" >> WriteToBigQuery(...)

postprocessed_collection | "Converter 2" >> ParDo(...) | "Write to Kafka" >> WriteToKafka(...)
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Code Architecture
Contribution-friendly and easy-to-understand patterns
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Code Architecture
Contribution-friendly and easy-to-understand patterns

├── client/          # 외부 서비스 클라이언트 (GCS, Redis, BigPicture)

├── inputfilter/     # 데이터 소스 필터링 및 검증

├── outputconverter/ # 예측 결과 형식 변환

├── pipelines/       # 실제 파이프라인 구현체

├── postprocessor/   # 출력 후 추가 처리 로직

├── predictor/       # ML 모델 예측 실행

├── preprocessor/    # 데이터 전처리 및 정제

├── record/          # 데이터 모델 정의

├── scheme/          # BigQuery 스키마 정의

├── script/          # 테스트용 스크립트 (미사용)

├── sink/            # 데이터 출력 대상

├── source/          # 데이터 입력 소스

└── util/            # 공통 유틸리티
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Practical Performance Tips
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Diagnosing a Network-Bound Stage
Why low CPU doesn’t mean you can scale-out your way to speed

● Workers show low CPU usage, yet throughput remains flat

● Autoscaler sees backlog growth → adds more workers 

(“scale-out”)

● Result: More workers, small throughput, higher cost
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Diagnosing a Network-Bound Stage
Why low CPU doesn’t mean you can scale-out your way to speed
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Why It Happens
Root Causes
● Per-element synchronous calls – Blocking HTTP calls stall threads

● Low concurrency within a worker – Limited SDK harness threads; blocking 

I/O kills parallelism

● Pipeline fusion & tiny bundles – Small bundles → low in-flight concurrency

● External system quotas / single-connection limits – No pooling → QPS ceiling

● Retry/backoff stalls – Rate-limits + exponential backoff = long idle times

● Network plumbing constraints – Latency, port limits, DNS throttling, disabled 

keep-alive
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Fixing a Network-Bound Stage in Beam/Dataflow
Practical changes that actually improve throughput

● Make I/O concurrent & non-blocking

○ Async client + connection pool + concurrency limits

○ Batch elements before API calls

● Break fusion before I/O

○ Use beam.Reshuffle() to get larger bundles into the I/O 

stage



class AsyncHTTPDoFn(beam.DoFn):

    def setup(self):

        self.sem = asyncio.Semaphore(128)

        self.client = httpx.AsyncClient(http2=True)

    async def _call_one(self, item):

        async with self.sem:

            r = await self.client.post(URL, json=item)

            return r.json()

    async def _call_batch(self, batch):

        return await asyncio.gather(*(self._call_one(it) for it in batch))

    def process(self, batch):

        yield from asyncio.run(self._call_batch(batch))

내용_1_2

Fixing a Network-Bound Stage in Beam/Dataflow
Practical changes that actually improve throughput

input_collection

| beam.Reshuffle()

| beam.BatchElements(

min_batch_size=32,

max_batch_size=256

)

| beam.ParDo(AsyncHTTPDoFn())
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Problem: GPU Memory Overload
How Beam worker processes & threads can exhaust GPU memory

● Default behavior: Beam spawns 1 process per CPU core
● Each process dynamically creates worker threads
● Each thread loads the model for its step
● GPU memory is limited (~16 GB)
● Model load consumes at least 3GB per thread

If every worker thread loads the model
→ CUDA Out of Memory
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Introducing Shared in Apache Beam
Optimizing resource usage for model inference

● Allows multiple threads within a 
single process to share an 
instance

● Reduces memory duplication for 
expensive objects in 
multi-threaded workers
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Introducing MultiprocessShared
Optimizing resource usage for model inference

● Allows multiple processes on the 
same worker to share a single 
instance

● Greatly reduces memory footprint 
for large models

●  Added in Beam Python 2.49.0



No more “CUDA out of memory”
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Problem: GPU Memory Overload
How Beam worker processes & threads can exhaust GPU memory

Source : https://i.namu.wiki/i/45ad00iM-3ONvtUxfXmr5SF-RkJnlXjUsxg1fb2LSwnXxo3whiO1qAHovKfMqYWZxQBc-v9W5mq0WWfeMmwasQ.webp



● Running all pipelines separately
→ High baseline cost

● Identified low-traffic pipelines with 
underutilized resources

● Consolidated these into shared 
pipelines

● Reduced idle resource usage 
without impacting performance

내용_1_2

Pipeline Consolidation for Cost Efficiency
Merging low-traffic pipelines to reduce baseline costs
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What’s Next?
Continuing the journey after this talk

● Expand embedding-based pipelines to more products
○ Deploy the current embedding-powered architecture 

beyond the initial use case, enabling search, 
recommendations, and personalization features across 
multiple services.

● Improve customer experience with more models
○ Integrate additional ML/LLM models to enhance relevance, 

accuracy, and responsiveness, focusing on multi-modal 
support (text, image, and video) for richer user interactions.
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We are hiring🙌



Thank you

박준성
Linkedin: linkedin.com/in/johan-park/
GitHub: github.com/Writtic
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변규현
Linkedin: linkedin.com/in/novemberde/
Blog: novemberde.github.io

http://linkedin.com/in/johan-park/
http://github.com/Writtic
https://www.linkedin.com/in/novemberde/
https://novemberde.github.io/

